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1. Introduction

Survival analysis models factors that influence the time to an event. Ordinary least squares regression methods fall short because the time to event is
typically not normally distributed, and the model cannot handle censoring, very common in survival data, without modification. Nonparametric methods
provide simple and quick looks at the survival experience, and the Cox proportional hazards regression model remains the dominant analysis method. This
seminar introduces procedures and outlines the coding needed in SAS to model survival data through both of these methods, as well as many techniques to
evaluate and possibly improve the model. Particular emphasis is given to proc lifetest for nonparametric estimation, and proc phreg for Cox
regression and model evaluation.

Note: A number of sub-sections are titled Background. These provide some statistical background for survival analysis for the interested reader (and for the
author of the seminar!). Provided the reader has some background in survival analysis, these sections are not necessary to understand how to run survival
analysis in SAS. These may be either removed or expanded in the future.

Note: The terms event and failure are used interchangeably in this seminar, as are time to event and failure time.

1.1 Sample dataset

Click here to download the dataset used in this seminar.

In this seminar we will be analyzing the data of 500 subjects of the Worcester Heart Attack Study (referred to henceforth as WHASS500, distributed with
Hosmer & Lemeshow(2008)). This study examined several factors, such as age, gender and BMI, that may influence survival time after heart attack. Follow
up time for all participants begins at the time of hospital admission after heart attack and ends with death or loss to follow up (censoring). The variables
used in the present seminar are:

¢ lenfol: length of followup, terminated either by death or censoring. The outcome in this study.
« fstat: the censoring variable, loss to followup=0, death=1

e age: age at hospitalization

e bmi: body mass index

e hr: initial heart rate

¢ gender: males=0, females=1

The data in the WHAS500 are subject to right-censoring only. That is, for some subjects we do not know when they died after heart attack, but we do know
at least how many days they survived.

1.2. Background: Important distributions in survival analysis

Understanding the mechanics behind survival analysis is aided by facility with the distributions used, which can be derived from the probability density
function and cumulative density functions of survival times.

1.2.1. Background: The probability density function, f(¢)

Imagine we have a random variable, T'ime, which records survival times. The function that describes likelihood of observing T'ime at time t relative to all
other survival times is known as the probability density function (pdf), or f(t) Integrating the pdf over a range of survival times gives the probability of
observing a survival time within that interval. For example, if the survival times were known to be exponentially distributed, then the probability of observing
a survival time within the interval [a, b] is Pr(a < Time < b) = fab ft)dt = fab e~ Mdt, where X is the rate parameter of the exponential distribution
and is equal to the reciprocal of the mean survival time. Most of the time we will not know a priori the distribution generating our observed survival times, but
we can get and idea of what it looks like using nonparametric methods in SAS with proc univariate . Here we see the estimated pdf of survival times in
the whas500 set, from which all censored observations were removed to aid presentation and explanation.
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Distribution of LENFOL

| proc univariate data = whas500(where=(fstat=1));
/ \ var lenfol;

histogram lenfol / kernel;

run;
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In the graph above we see the correspondence between pdfs and histograms. Density functions are essentially histograms comprised of bins of vanishingly
small widths. Nevertheless, in both we can see that in these data, shorter survival times are more probable, indicating that the risk of heart attack is strong
initially and tapers off as time passes. (Technically, because there are no times less than 0, there should be no graph to the left of LENFOL=0)

1.2.2. Background: The cumulative distribution function, F'(T')

The cumulative distribution function (cdf), F(t) describes the probability of observing Time less than or equal to some time ¢, or Pr(Time < t). Above
we described that integrating the pdf over some range yields the probability of observing T'imne in that range. Thus, we define the cumulative distribution
function as:

ﬂﬂ:Amet

As an example, we can use the cdf to determine the probability of observing a survival time of up fo 100 days. The above relationship between the cdf and
pdf also implies:

dF (%)

ft) = ——

In SAS, we can graph an estimate of the cdf using proc univariate.

Cumulative Distribution Function for LENFOL
100

a0

a0
proc univariate data = whas500(where=(fstat=1));
var lenfol;

40 cdfplot lenfol;
run;
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In the graph above we can see that the probability of surviving 200 days or fewer is near 50%. Thus, by 200 days, a patient has accumulated quite a bit of
risk, which accumulates more slowly after this point. In intervals where event times are more probable (here the beginning intervals), the cdf will increase
faster.

1.2.3. Background: The Survival function, S(t)
A simple transformation of the cumulative distribution function produces the survival function, S(¢):
S(t) =1— F(T)

The survivor function, S(t), describes the probability of surviving past time ¢, or Pr(T'ime > t). If we were to plot the estimate of S(¢), we would see
that it is a reflection of F(t) (about y=0 and shifted up by 1). Here we use proc lifetest to graph S(t).
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Product-Limit Survival Estimate
with Number of Subjects at Risk

08

% 0.6
% proc lifetest data=whas500(where=(fstat=1)) plots=survival(atrisk);
£ . time lenfol*fstat(@);
£ run;
0.2
0.0
AtRisk| =215 82 38 17 4 o
0 500 1000 1500 2000 2500
LENFOL

It appears the probability of surviving beyond 1000 days is a little less than 0.2, which is confirmed by the cdf above, where we see that the probability of
surviving 1000 days or fewer is a little more than 0.8.

1.2.4. Background: The hazard function, h(t)

The primary focus of survival analysis is typically to model the hazard rate, which has the following relationship with the f(¢) and S(t):

h(t) = %

The hazard function, then, describes the relative likelihood of the event occurring at time ¢ (f(t) ), conditional on the subject's survival up to that time ¢ (

S(t)). The hazard rate thus describes the instantaneous rate of failure at time ¢ and ignores the accumulation of hazard up to time ¢ (unlike F(t) and
S(t)). We can estimate the hazard function is SAS as well using proc lifetest:

Epanechnikov Kernel-Smoothed Hazard Function

0.008 | |

ﬁ 0.006 R. ‘I
= \
\ f
g \ ; proc lifetest data=whas500(where=(fstat=1)) plots=hazard(bw=200);
g 0.004 \ | time lenfol*fstat(@);
ki \ }f run;
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As we have seen before, the hazard appears to be greatest at the beginning of follow-up time and then rapidly declines and finally levels off. Indeed the
hazard rate right at the beginning is more than 4 times larger than the hazard 200 days later. Thus, at the beginning of the study, we would expect around
0.008 failures per day, while 200 days later, for those who survived we would expect 0.002 failures per day.

1.2.5. Background: The cumulative hazard function

Also useful to understand is the cumulative hazard function, which as the name implies, cumulates hazards over time. It is calculated by integrating the
hazard function over an interval of time:

Let us again think of the hazard function, h(t), as the rate at which failures occur at time t. Let us further suppose, for illustrative purposes, that the hazard
rate stays constant at % (z number of failures per unit time t) over the interval [0, t]. Summing over the entire interval, then, we would expect to observe x
failures, as %t = z, (assuming repeated failures are possible, such that failing does not remove one from observation). One interpretation of the cumulative
hazard function is thus the expected number of failures over time interval [O, t]. It is not at all necessary that the hazard function stay constant for the above
interpretation of the cumulative hazard function to hold, but for illustrative purposes it is easier to calculate the expected number of failures since integration

is not needed. Expressing the above relationship as %H(t) = h(t), we see that the hazard function describes the rate at which hazards are accumulated

over time.
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Using the equations, h(t) = %t) and f(t) =

50 we can derive the following relationships between the cumulative hazard function and the other

_ds
dt’
survival functions:

S(t) = exp(~H(1))
F(t) = 1 — exp(~H(1))
#(£) = h(t)eap(~H(2))

From these equations we can see that the cumulative hazard function H (¢) and the survival function S(t) have a simple monotonic relationship, such that
when the Survival function is at its maximum at the beginning of analysis time, the cumulative hazard function is at its minimum. As time progresses, the
Survival function proceeds towards it minimum, while the cumulative hazard function proceeds to its maximum. From these equations we can also see that
we would expect the pdf, f(¢), to be high when h(t) the hazard rate is high (the beginning, in this study) and when the cumulative hazard H (t) is low (the
beginning, for all studies). In other words, we would expect to find a lot of failure times in a given time interval if 1) the hazard rate is high and 2) there are
still a lot of subjects at-risk.

We can estimate the cumulative hazard function using proc lifetest, the results of which we send to proc sgplot for plotting. We see a sharper rise
in the cumulative hazard at the beginning of analysis time, reflecting the larger hazard rate during this period.

£ /f ods output ProductLimitEstimates = ple;

& ' proc lifetest data=whas500(where=(fstat=1)) nelson outs=outwhas500;
5 3 / time lenfol*fstat(0);

p B run;

2

? / proc sgplot data = ple;

series x = lenfol y = CumHaz;
run;

0 500 1000 1500 2000 2500
LENFOL

2. Data preparation and exploration

2.1. Structure of the data

This seminar covers both proc lifetest and proc phreg, and data can be structured in one of 2 ways for survival analysis. First, there may be one row
of data per subject, with one outcome variable representing the time to event, one variable that codes for whether the event occurred or not (censored), and
explanatory variables of interest, each with fixed values across follow up time. Both proc lifetest and proc phreg will accept data structured this way.
The WHASS500 data are stuctured this way. Notice there is one row per subject, with one variable coding the time to event, lenfol:

Obs | ID | LENFOL | FSTAT  AGE BMI | HR | GENDER

1 1 2178 0 83 25.5405 89 Male
2 2 2172 0 49 24.0240 84 Male
3 3 2190 0 70  22.1429 83  Female
4 4 297 1 70  26.6319 65 Male
5 5 2131 0 70  24.4125 63 Male

A second way to structure the data that only proc phreg accepts is the "counting process" style of input that allows multiple rows of data per subject. For
each subject, the entirety of follow up time is partitioned into intervals, each defined by a "start" and "stop" time. Covariates are permitted to change value
between intervals. Additionally, another variable counts the number of events occurring in each interval (either 0 or 1 in Cox regression, same as the
censoring variable). As an example, imagine subject 1 in the table above, who died at 2,178 days, was in a treatment group of interest for the first 100 days
after hospital admission. This subject could be represented by 2 rows like so:

Obs | id | start | stop | status | treatment

1 1 0 100 0 1

2 1 100 2178 1 0
This structuring allows the modeling of time-varying covariates, or explanatory variables whose values change across follow-up time. Data that are structured

in the first, single-row way can be modified to be structured like the second, multi-row way, but the reverse is typically not true. We will model a time-varying
covariate later in the seminar.

2.2. Data exploration with proc univariate and proc corr

Any serious endeavor into data analysis should begin with data exploration, in which the researcher becomes familiar with the distributions and typical values
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of each variable individually, as well as relationships between pairs or sets of variables. Within SAS, proc univariate provides easy, quick looks into the
distributions of each variable, whereas proc corr can be used to examine bivariate relationships. Because this seminar is focused on survival analysis, we
provide code for each proc and example output from proc corr with only minimal explanation.

proc corr data = whas500 plots(maxpoints=none)=matrix(histogram);
var lenfol gender age bmi hr;

run;
Simple Statistics

Variable| N Mean Std Dev Sum | Minimum | Maximum
LENFOL 500 882.43600  705.66513 441218 = 1.00000 2358
GENDER 500  0.40000 0.49039 | 200.00000 0 1.00000
AGE 500 69.84600 14.49146 34923 30.00000 ' 104.00000
BMI 500 26.61378 5.40566 13307  13.04546  44.83886
HR 500 87.01800  23.58623 43509 35.00000  186.00000

Pearson Correlation Coefficients, N = 500

LENFOL A GENDER AGE BMI HR
LENFOL & 1.00000 -0.06367 -0.31221 0.19263 -0.17974
GENDER | -0.06367  1.00000 | 0.27489 | -0.14858 0.11598

AGE -0.31221  0.27489 = 1.00000 | -0.40248 0.14914
BMI 0.19263 -0.14858 | -0.40248 | 1.00000  -0.05579
HR -0.17974  0.11598 = 0.14914 | -0.05579 = 1.00000

Scatter Plot Matrix
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We see in the table above, that the typical subject in our dataset is more likely male, 70 years of age, with a bmi of 26.6 and heart rate of 87. The mean
time to event (or loss to followup) is 882.4 days, not a particularly useful quantity. All of these variables vary quite a bit in these data. Most of the variables
are at least slightly correlated with the other variables.

3. Nonparametric (Descriptive) Survival Analysis using proc lifetest
3.1. The Kaplan-Meier estimator of the survival function

3.1.1 Background: The Kaplan Meier Estimator:

The Kaplan_Meier survival function estimator is calculated as:
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Sy =T~

i<t 1

where n; is the number of subjects at risk and d; is the number of subjects who fail, both at time ¢;. Thus, each term in the product is the conditional
probability of survival beyond time t;, meaning the probability of surviving beyond time ¢;, given the subject has survived up to time ¢;. The survival function
estimate of the the unconditional probability of survival beyond time ¢ (the probability of survival beyond time ¢ from the onset of risk) is then obtained by
multiplying together these conditional probabilities up to time ¢ together.

Looking at the table of "Product-Limit Survival Estimates" below, for the first interval, from 1 day to just before 2 days, n; =500, d; = 8, so

5’(1) = 5%%88 = 0.984. The probability of surviving the next interval, from 2 days to just before 3 days during which another 8 people died, given that the
subject has survived 2 days (the conditional probability) is 4329;8 = 0.98374. The unconditional probability of surviving beyond 2 days (from the onset of

) 4 5008 . 492-8

risk) then is S(2) = 55~ X —55— = 0.984 x 0.98374 = .9680

3.1.2. Obtaining and interpreting tables of Kaplan-Meier Estimates from proc lifetest

Survival analysis often begins with examination of the overall survival experience through non-parametric methods, such as Kaplan-Meier (product-limit) and
life-table estimators of the survival function. Non-parametric methods are appealing because no assumption of the shape of the survivor function nor of the
hazard function need be made. However, nonparametric methods do not model the hazard rate directly nor do they estimate the magnitude of the effects of
covariates.

In the code below, we show how to obtain a table and graph of the Kaplan-Meier estimator of the survival function from proc lifetest:

e At a minimum proc lifetest requires specification of a failure time variable, here 1enfol, on the time statement.

« Without further specification, SAS will assume all times reported are uncensored, true failures. Thus, because many observations in WHAS500 are
right-censored, we also need to specify a censoring variable and the numeric code that identifies a censored observation, which is accomplished below
with "fstat(e)" . All numbers within the parentheses are treated as indicators for censoring, which implies that all numbers excluded from the
parentheses are treated as indicators that the event occurred.

* We also specify the option atrisk on the proc lifetest statement to display the number at risk in our sample at various time points.

proc lifetest data=whas500 atrisk outs=outwhas500;
time lenfol*fstat(0);

run;
Product-Limit Survival Estimates

Number | Observed Survival Standard | Number | Number

LENFOL at Risk Events | Survival | Failure Error | Failed Left
0.00 500 0 1.0000 0 0 0 500
1.00 1 499
1.00 2 498
1.00 3 497
1.00 . . . . . 4 496
1.00 . . . . . 5 495
1.00 6 494
1.00 7 493
1.00 500 8 0.9840 0.0160 0.00561 8 492
2.00 9 491
2.00 . . . . . 10 490
2.00 . . . . . 11 489
2.00 . . . . . 12 488
2.00 . . . . . 13 487
2.00 . . . . . 14 486
2.00 . . . . . 15 485
2.00 492 8 0.9680 0.0320 0.00787 16 484
3.00 . . . . . 17 483
3.00 . . . . . 18 482
3.00 484 3 0.9620 0.0380 0.00855 19 481

Above we see the table of Kaplan-Meier estimates of the survival function produced by proc lifetest. Each row of the table corresponds to an interval of
time, beginning at the time in the "LENFOL" column for that row, and ending just before the time in the "LENFOL" column in the first subsequent row that
has a different "LENFOL" value. For example, the time interval represented by the first row is from 0 days to just before 1 day. In this interval, we can see
that we had 500 people at risk and that no one died, as "Observed Events" equals 0 and the estimate of the "Survival" function is 1.0000. During the next
interval, spanning from 1 day to just before 2 days, 8 people died, indicated by 8 rows of "LENFOL"=1.00 and by "Observed Events"=8 in the last row where
"LENFOL"=1.00. It is important to note that the survival probabilities listed in the Survival column are unconditional, and are to be interpreted as the
probability of surviving from the beginning of follow up time up to the number days in the LENFOL column.
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Let's take a look at later survival times in the table:

Product-Limit Survival Estimates

Number | Observed Survival Standard | Number | Number
LENFOL at Risk Events | Survival | Failure Error | Failed Left
359.00 . . . . . 136 364
359.00 365 2| 0.7260 0.2740 0.0199 137 363
363.00 363 1 0.7240 0.2760 0.0200 138 362
368.00 * 362 0 138 361
371.00 * 0 138 360
371.00 * . 0 138 359
371.00 * 361 0 . . . 138 358
373.00 * 358 0 138 357
376.00 * 0 138 356
376.00 * 357 0 138 355
382.00 355 1 0.7220  0.2780 0.0200 139 354
385.00 354 1 0.7199 0.2801 0.0201 140 353

From "LENFOL"=368 to 376, we see that there are several records where it appears no events occurred. These are indeed censored observations, further
indicated by the "*" appearing in the unlabeled second column. Subjects that are censored after a given time point contribute to the survival function until
they drop out of the study, but are not counted as a failure. We can see this reflected in the survival function estimate for "LENFOL"=382. During the
interval [382,385) 1 out of 355 subjects at-risk died, yielding a conditional probability of survival (the probability of survival in the given interval, given that the

subject has survived up to the begininng of the interval) in this interval of 3255;1 = 0.9972. We see that the uncoditional probability of surviving beyond 382

days is .7220, since §(382) = 0.7220 = p(surviving up to 382 days) x 0.9971831, we can solve for

p(surviving up to 382 days) = g:;g?g = .7240. In the table above, we see that the probability surviving beyond 363 days = 0.7240, the same

probability as what we calculated for surviving up to 382 days, which implies that the censored observations do not change the survival estimates when they
leave the study, only the number at risk.

3.1.3. Graphing the Kaplan-Meier estimate

Graphs of the Kaplan-Meier estimate of the survival function allow us to see how the survival function changes over time and are fortunately very easy to
generate in SAS:

e By default, proc lifetest graphs the Kaplan Meier estimate, even without the plot= option on the proc lifetest statement, so we could have used
the same code from above that produced the table of Kaplan-Meier estimates to generate the graph.
However, we would like to add confidence bands and the number at risk to the graph, so we add plots=survival(atrisk cb) .

Product-Limit Survival Estimate

proc lifetest data=whas500 atrisk plots=survival(cb) outs=outwhas500;
04 time lenfol*fstat(0);
run;

Survival Probability

1] 500 1000 1500 2000 2500
LENFOL
+ Censored O 85% Hall-Wellner Band

The step function form of the survival function is apparent in the graph of the Kaplan-Meier estimate. When a subject dies at a particular time point, the step
function drops, whereas in between failure times the graph remains flat. The survival function drops most steeply at the beginning of study, suggesting that
the hazard rate is highest immediately after hospitalization during the first 200 days. Censored observations are represented by vertical ticks on the graph.
Notice the survival probability does not change when we encounter a censored observation. Because the observation with the longest follow-up is censored,
the survival function will not reach 0. Instead, the survival function will remain at the survival probability estimated at the previous interval. The survival
function is undefined past this final interval at 2358 days. The blue-shaded area around the survival curve represents the 95% confidence band, here Hall-
Wellner confidence bands. This confidence band is calculated for the entire survival function, and at any given interval must be wider than the pointwise
confidence interval (the confidence interval around a single interval) to ensure that 95% of all pointwise confidence intervals are contained within this band.
Many transformations of the survivor function are available for alternate ways of calculating confidence intervals through the conftype option, though most
transformations should yield very similar confidence intervals.

3.2. Nelson-Aalen estimator of the cumulative hazard function
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Because of its simple relationship with the survival function, S(t) = e’H(t), the cumulative hazard function can be used to estimate the survival function.

The Nelson-Aalen estimator is a non-parametric estimator of the cumulative hazard function and is given by:

where d; is the number who failed out of n; at risk in interval £;. The estimator is calculated, then, by summing the proportion of those at risk who failed in

each interval up to time ¢.

* The Nelson-Aalen estimator is requested in SAS through the nelson option on the proc lifetest statement. SAS will output both Kaplan Meier

ti<t 'V

estimates of the survival function and Nelson-Aalen estimates of the cumulative hazard function in one table.

proc lifetest data=whas500 atrisk nelson;
time lenfol*fstat(0);
run;

Survival Function and Cumulative Hazard Rate

Number | Observed
LENFOL at Risk Events | Survival | Failure

0.00 500 0 1.0000 0
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00 500 8 0.9840 0.0160
2.00
2.00
2.00
2.00
2.00
2.00
2.00
2.00 492 8 0.9680 | 0.0320
3.00
3.00
3.00 484 3 0.9620 0.0380

Let's confirm our understanding of the calculation of the Nelson-Aalen estimator by calculating the estimated cumulative hazard at day 3:
H(3) = 8+ 8 4 3 —0.0385, which matches the value in the table. The interpretation of this estimate is that we expect 0.0385 failures (per

500 ' 492 " 484

person) by the end of 3 days. The estimate of survival beyond 3 days based off this Nelson-Aalen estimate of the cumulative hazard would then be

5’(3) = exp(—0.0385) = 0.9623. This matches closely with the Kaplan Meier product-limit estimate of survival beyond 3 days of 0.9620. One can
request that SAS estimate the survival function by exponentiating the negative of the Nelson-Aalen estimator, also known as the Breslow estimator, rather
than by the Kaplan-Meier estimator through the method=breslow option on the proc lifetest statement. In very large samples the Kaplan-Meier

Left
500
499
498
497
496
495
494
493
492
491
490
489
488
487
486
485
484
483
482

Product-Limit Nelson-Aalen
Cum Haz
Survival Standard | Cumulative | Standard | Number | Number

Error Hazard Error | Failed

0 0 . 0

1

2

3

4

5

6

7

0.00561 0.0160  0.00566 8

9

10

11

12

13

14

15

0.00787 0.0323  0.00807 16

17

18

0.00855 0.0385  0.00882 19

estimator and the transformed Nelson-Aalen (Breslow) estimator will converge.

3.3. Calculating median, mean, and other survival times of interest in proc lifetest

Researchers are often interested in estimates of survival time at which 50% or 25% of the population have died or failed. Because of the positive skew often
seen with followup-times, medians are often a better indicator of an "average" survival time. We obtain estimates of these quartiles as well as estimates of
the mean survival time by default from proc lifetest. We see that beyond beyond 1,671 days, 50% of the population is expected to have failed. Notice
that the interval during which the first 25% of the population is expected to fail, [0,297) is much shorter than the interval during which the second 25% of the
population is expected to fail, [297,1671). This reinforces our suspicion that the hazard of failure is greater during the beginning of follow-up time.

proc lifetest data=whas500 atrisk nelson;
time lenfol*fstat(0);
run;

Quartile Estimates
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95% Confidence Interval

Point
Percent | Estimate Transform [Lower  Upper)
75 2353.00 LOGLOG |2350.00 | 2358.00
50 1627.00 LOGLOG | 1506.00 | 2353.00
25 296.00 LOGLOG 146.00  406.00

Mean | Standard Error
1417.21 48.14

3.4. Comparing survival functions using nonparametric tests

Suppose that you suspect that the survival function is not the same among some of the groups in your study (some groups tend to fail more quickly than
others). One can also use non-parametric methods to test for equality of the survival function among groups in the following manner:

¢ When provided with a grouping variable in a strata statement in proc lifetest, SAS will produce graphs of the survival function (unless other graphs
are requested) stratified by the grouping variable as well as tests of equality of the survival function across strata. For example, we could enter the
class (categorical) variable gender on the strata statement to request that SAS compare the survival experiences of males and females.

Product-Limit Survival Estimates
With Number of Subjects at Risk and 95% Hall-WelIner Bands

+ Censored

proc lifetest data=whas500 atrisk plots=survival(atrisk cb) outs=outwhas500;
strata gender;

time lenfol*fstat(0);

02 run;

Survival Probability

0.0

Female| =200 115 85 35 14 o
Male| 300 17a 144 84 33 o

0 500 1000 1500 2000 2500
LENFOL

GENDER Female

Male

Test of Equality over Strata

Pr>
Test | Chi-Square | DF | Chi-Square

Log-Rank 77911 1 0.0053
Wilcoxon 5.5370 1 0.0186
-2Log(LR) 10.5120 1 0.0012

In the graph of the Kaplan-Meier estimator stratified by gender below, it appears that females generally have a worse survival experience. This is reinforced
by the three significant tests of equality.
3.4.1. Background: Tests of equality of the survival function

In the output we find three Chi-square based tests of the equality of the survival function over strata, which support our suspicion that survival differs
between genders. The calculation of the statistic for the nonparametric "Log-Rank" and "Wilcoxon" tests is given by :

m 2
[lej(dij - é,-j)]
Q== ,

o 9
D Wi
1=1

where dij is the observed number of failures in stratum 7 at time tj, éi]- is the expected number of failures in stratum % at time tj, f)ij is the estimator of
the variance of d;;, and w; is the weight of the difference at time ¢; (see Hosmer and Lemeshow(2008) for formulas for éij and f)i]-). In a nutshell, these

statistics sum the weighted differences between the observed number of failures and the expected number of failures for each stratum at each timepoint,
assuming the same survival function of each stratum. In other words, if all strata have the same survival function, then we expect the same proportion to die
in each interval. If these proportions systematically differ among strata across time, then the @) statistic will be large and the null hypothesis of no difference
among strata is more likely to be rejected.

The log-rank and Wilcoxon tests in the output table differ in the weights w; used. The log-rank or Mantel-Haenzel test uses w; = 1, so differences at all
time intervals are weighted equally. The Wilcoxon test uses w; = n;, so that differences are weighted by the number at risk at time ¢;, thus giving more
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weight to differences that occur earlier in followup time. Other nonparametric tests using other weighting schemes are available through the test= option

on the strata statement. The "-2Log(LR)" likelihood ratio test is a parametric test assuming exponentially distributed survival times and will not be further
discussed in this nonparametric section.

3.5. Nonparametric estimation of the hazard function

Standard nonparametric techniques do not typically estimate the hazard function directly. However, we can still get an idea of the hazard rate using a graph
of the kernel-smoothed estimate. As the hazard function h(t) is the derivative of the cumulative hazard function H (t), we can roughly estimate the rate of
change in H(t) by taking successive differences in H (t) between adjacent time points, AH (t) = H(t;) — H(t;—1). SAS computes differences in the
Nelson-Aalen estimate of H(t) We generally expect the hazard rate to change smoothly (if it changes) over time, rather than jump around haphazardly. To
accomplish this smoothing, the hazard function estimate at any time interval is a weighted average of differences within a window of time that includes
many differences, known as the bandwidth. Widening the bandwidth smooths the function by averaging more differences together. However, widening will
also mask changes in the hazard function as local changes in the hazard function are drowned out by the larger number of values that are being averaged
together. Below is an example of obtaining a kernel-smoothed estimate of the hazard function across BMI strata with a bandwidth of 200 days:

* We request plots of the hazard function with a bandwidth of 200 days with plot=hazard(bw=200)
e SAS conveniently allows the creation of strata from a continuous variable, such as bmi, on the fly with the strata statement We specify the left
endpoints of each bmi to form 5 bmi categories: 15-18.5, 18.5-25, 25-30, 30-40, and >40.

Epanechnikov Kernel-Smoothed Hazard Functions
0.010
0.008 |
0.006 - | ‘

0.004 | strata bmi(15,18.5,25,30,40);

time lenfol*fstat(0);
run;

Estimated Hazard Rate

0.002

F
e i &
. = £
0.000 S — — =
0 500 1000 1500 2000
LENFOL

BMI 2175

16.75

275

35

=40
Bandwidth=200

The lines in the graph are labeled by the midpoint bmi in each group. From the plot we can see that the hazard function indeed appears higher at the
beginning of follow-up time and then decreases until it levels off at around 500 days and stays low and mostly constant. The hazard function is also
generally higher for the two lowest BMI categories. The sudden upticks at the end of follow-up time are not to be trusted, as they are likely due to the few
number of subjects at risk at the end. The red curve representing the lowest BMI category is truncated on the right because the last person in that group
died long before the end of followup time.

4. Background: The Cox proportional hazards regression model

4.1. Background: Estimating the hazard function, h(t)

Whereas with non-parametric methods we are typically studying the survival function, with regression methods we examine the hazard function, h(t). The
hazard function for a particular time interval gives the probability that the subject will fail in that interval, given that the subject has not failed up to that point
in time. The hazard rate can also be interpreted as the rate at which failures occur at that point in time, or the rate at which risk is accumulated, an
interpretation that coincides with the fact that the hazard rate is the derivative of the cumulative hazard function, H (t).

In regression models for survival analysis, we attempt to estimate parameters which describe the relationship between our predictors and the hazard rate.
We would like to allow parameters, the [s, to take on any value, while still preserving the non-negative nature of the hazard rate. A common way to address
both issues is to parameterize the hazard function as:

h(t|z) = exp(Bo + Pi)

In this parameterization, h(t\m) is constrained to be strictly positive, as the exponential function always evaluates to positive, while 8y and (31 are allowed
to take on any value. Notice, however, that ¢ does not appear in the formula for the hazard function, thus implying that in this parameterization, we do not
model the hazard rate's dependence on time. A complete description of the hazard rate's relationship with time would require that the functional form of this
relationship be parameterized somehow (for example, one could assume that the hazard rate has an exponential relationship with time). However, in many
settings, we are much less interested in modeling the hazard rate's relationship with time and are more interested in its dependence on other variables, such
as experimental treatment or age. For such studies, a semi-parametric model, in which we estimate regression parameters as covariate effects but ignore
(leave unspecified) the dependence on time, is appropriate.

4.2. Background: The Cox proportional hazards model

We can remove the dependence of the hazard rate on time by expressing the hazard rate as a product of ho(t), a baseline hazard rate which describes the
hazard rates dependence on time alone, and 7(z, 3;), which describes the hazard rates dependence on the other = covariates:

http://www .ats.ucla.edu/stat/sas/seminars/sas_survival/
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h(t) = ho(t)r(z, Bz)

In this parameterization, h(t) will equal ho(t) when r(z, 8;) = 1. It is intuitively appealing to let 7(z, 8;) = 1 when all z = 0, thus making the baseline
hazard rate, hg (t) equivalent to a regression intercept. Above, we discussed that expressing the hazard rate's dependence on its covariates as an
exponential function conveniently allows the regression coefficients to take on any value while still constraining the hazard rate to be positive. The
exponential function is also equal to 1 when its argument is equal to 0. We will thus let r(z, 8;) = exp(x3;), and the hazard function will be given by:

h(t) = ho(t)exp(zp.)

This parameterization forms the Cox proportional hazards model. 1t is called the proportional hazards model because the ratio of hazard rates between two
groups with fixed covariates will stay constant over time in this model. For example, the hazard rate when time ¢ when £ = x; would then be

h(t|z1) = ho(t)ezp(x18:), and at time ¢ when = 2 would be h(t|z2) = ho(t)exp(x28;). The covariate effect of x, then is the ratio between these
two hazard rates, or a hazard ratio(HR):

_ h(tlz2)  ho(t)exp(z2p:)
HE= 300 ~ ho(eap(aifn)

Notice that the baseline hazard rate, hg(t) is cancelled out, and that the hazard rate does not depend on time ¢:

HR = exp(B.(z2 — 1))

The hazard rate H R will thus stay constant over time with fixed covariates. Because of this parameterization, covariate effects are multiplicative rather than
additive and are expressed as hazard ratios, rather than hazard differences. As we see above, one of the great advantages of the Cox model is that
estimating predictor effects does not depend on making assumptions about the form of the baseline hazard function, ho(t), which can be left unspecified.
Instead, we need only assume that whatever the baseline hazard function is, covariate effects multiplicatively shift the hazard function and these
multiplicative shifts are constant over time.

Cox models are typically fitted by maximum likelihood methods, which estimate the regression parameters that maximize the probability of observing the
given set of survival times. So what is the probability of observing subject 4 fail at time ¢;? At the beginning of a given time interval ¢;, say there are R;

subjects still at-risk, each with their own hazard rates:
h(tj|zi) = ho(t;)exp(xiB)

The probability of observing subject j fail out of all R; remaing at-risk subjects, then, is the proportion of the sum total of hazard rates of all R; subjects
that is made up by subject j's hazard rate. For example, if there were three subjects still at risk at time ¢, the probability of observing subject 2 fail at time
t; would be:

P'I’(S’U,bject = 2|failure — t) — h(t]|$2)
! h(tjlz1) + h(t;|z2) + h(t;|z3)

All of those hazard rates are based on the same baseline hazard rate ho(ti), so we can simplify the above expression to:

exp(z2f)
exp(z18) + exp(z2f) + exp(3p)

We can similarly calculate the joint probability of observing each of the n subject's failure times, or the likelihood of the failure times, as a function of the
regression parameters, 3, given the subject's covariates values Tj:

Pr(subject = 2| failure = t;) =

exp(z;[0)
i€R, exp(z; )

Lw):f[ -

J

where Rj is the set of subjects still at risk at time tj. Maximum likelihood methods attempt to find the ,8 values that maximize this likelihood, that is, the

regression parameters that yield the maximum joint probability of observing the set of failure times with the associated set of covariate values. Because this
likelihood ignores any assumptions made about the baseline hazard function, it is actually a partial likelihood, not a full likelihood, but the resulting 8 have
the same distributional properties as those derived from the full likelihood.

5. Cox proportional hazards regression in SAS using proc phreg

5.1. Fitting a simple Cox regression model

We request Cox regression through proc phreg in SAS. Previously, we graphed the survival functions of males in females in the WHAS500 dataset and
suspected that the survival experience after heart attack may be different between the two genders. Perhaps you also suspect that the hazard rate changes
with age as well. Below we demonstrate a simple model in proc phreg, where we determine the effects of a categorical predictor, gender, and a
continuous predictor, age on the hazard rate:

e To specify that gender is a categorical predictor, we enter it on the class statement.

http://www .ats.ucla.edu/stat/sas/seminars/sas_survival/ 11/28



12/8/2015

SAS Seminar: Introduction to Survival Analysis in SAS

¢ We also would like survival curves based on our model, so we add plots=survival to the proc phreg statement, although as we shall see this

specification is probably insufficient for what we want.

¢ Onthe model statement, on the left side of the equation, we provide the follow up time variable, lenfol, and the censoring variable, fstat, with all

censoring values listed in parentheses. On the right side of the equation we list all the predictors.

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender age;;
run;

Model Fit Statistics
Without With

Criterion | Covariates | Covariates
2LOGL 2455158 | 2313.140
AlC 2455.158  2317.140
SBC 2455.158  2323.882

Testing Global Null Hypothesis: BETA=0
Test | Chi-Square | DF | Pr > ChiSq

Likelihood Ratio 142.0177 | 2 <.0001
Score 126.6381 2 <.0001
Wald 119.3806 2 <.0001

Type 3 Tests
Effect DF Wald Chi-Square | Pr > ChiSq

GENDER | 1 0.2175 0.6410
AGE 1 116.3986 <.0001

Analysis of Maximum Likelihood Estimates

Parameter  Standard Hazard
Parameter DF | Estimate Error | Chi-Square | Pr > ChiSq | Ratio Label
GENDER | Female | 1 -0.06556 = 0.14057 0.2175 0.6410  0.937 GENDER Female
AGE 1 0.06683  0.00619 116.3986 <.0001 1.069

The above output is only a portion of what SAS produces each time you run proc phreg . In particular we would like to highlight the following tables:

* Model Fit Statistics: Displays fit statistics which are typically used for model comparison and selection. This is our first model, so we have no other

model to compare with, except that by default SAS will display model fit statistics of a model with no predictors. We see here that adding gender and
particularly age (as we will see below) as predictors improves the fit of the model, as all three statistics decrease

® Testing Global Null Hypothesis: BETA=@: Displays test of hypothesis that all coefficients in the model are 0, that is, an overall test of whether the model

as a whole can predict changes in the hazard rate. These tests are asymptotically equivalent, but may differ in smaller samples, in which case the
likelihood ratio test is generally preferred. Here the tests agree, and it appears that at least one of our regression coefficients is significantly different
from 0.

* Analysis of Maximum Likelihood Estimates : Displays model coefficients, tests of significance, and exponentiated coefficient as hazard ratio. Here it

appears that although females have a ~6% (Hazard Ratio = 0.937) decrease in the hazard rate compared to males, this decrease is not significant. On
the other hand, with each year of age the hazard rate increases by 7% (Hazard Ratio = 1.069), a significant change. Our initial supsicion that the
hazard rates were different between genders seems to be wrong once we account for age effects (females are generally older in this dataset), but as
shall see the effects are more nuanced. Also notice that there is no intercept. In Cox regression, the intercept is absorbed into the baseline hazard
function, which is left unspecified.

5.2. Producing graphs of the survival and baseline hazard function after Cox regression

Handily, proc phreg has pretty extensive graphing capabilities.< Below is the graph and its accompanying table produced by simply adding
plots=survival to the proc phreg statement./p>

e When only plots=survival is specified on the proc phreg statement, SAS will produce one graph, a "reference curve" of the survival function at the
reference level of all categorical predictors and at the mean of all continuous predictors.

http://www .ats.ucla.edu/stat/sas/seminars/sas_survival/
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proc phreg data=whas500 plots=survival;
class gender;

model lenfol*fstat(@) = gender age;;
run;

Survivor Function for Reference Setting

Survival Prabability

0 500 1000 1500 2000 2500
LENFOL

Reference Set of Covariates for

Plotting
AGE GENDER
69.845947 Male

In this model, this reference curve is for males at age 69.845947 Usually, we are interested in comparing survival functions between groups, so we will need
to provide SAS with some additional instructions to get these graphs.

5.2.1. Use the baseline statement to generate survival plots by group

Acquiring more than one curve, whether survival or hazard, after Cox regression in SAS requires use of the baseline statement in conjunction with the
creation of a small dataset of covariate values at which to estimate our curves of interest. Here are the typical set of steps to obtain survival plots by group:

» First, a dataset of covariate values is created in a data step. Each row contains a set of covariate values for which we would like a survival plot.

¢ This dataset name is then specified on the covariates= option on the baseline statement. Internally, SAS will expand the dataset to contain one
observation at each event time per set of covariate values in the covariates= dataset.

e This expanded dataset can be named and then viewed with the out= option, but obtaining the out= dataset is not at all necessary to generate the
survival plots.

* Two options on the baseline statement control grouping in the graphs. If a variable is specified after group= (not used until later in the seminar), SAS
will create separate graphs for each level of that variable. If a variable is specified after the rowid= option, SAS will create separate lines within the
same plot for each level of this variable. The group= and rowid= options on the baseline statment work in tandem with the (overlay=group) option
specified immediately after the plots option on the proc phreg statement. If plots(overlay=group) is specified, and there is a variable specified on the
group= option on the baseline statement, SAS will create separate graphs by level of that variable. If additionally a variable is specified on the rowid=
option on the baseline statement, SAS will plot separate lines by this variable in each plot. If no group= option is used, we can still get separate lines
by the rowid= variable on one plot by specifying no type of overlaying like so: plots(overlay)=. Omitting the (overiay) completely will tell SAS to
create separate graphs by rowid=.

¢ Both survival and cumulative hazard curves are available using the plots= option on the proc phreg statement, with the keywords survival and

cumhaz , respectively.

Let's get survival curves (cumulative hazard curves are also available) for males and female at the mean age of 69.845947 in the manner we just described.

o We use a data step to create a dataset called "covs" with 2 rows of covariates

* We then specify "covs" on covariates= option on the baseline statement. There are 326 discrete event times in the WHAS500 dataset, so the
baseline statement will then expand the covariates= dataset so that we have 326 entries each for males and females at the mean age.

* We specify the name of the output dataset, "base", that contains our covariate values at each event time on the out= option

* We request survival plots that are overlaid with the plot(overlay)=(survival) specification on the proc phreg statement. If we did not specify
(overlay) , SAS would produce separate graphs for males and females.

e \We also add the rowid= option on the baseline statement, which tells SAS to label the curves on our graph using the variable gender .
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Survivor Functions

Sunvival Probability

1] 500 1000 1500 2000
LENFOL
Male

gender Female

The survival curves for females is slightly higher than the curve for males, suggesting that the survival experience is possibly slightly better (if significant) for
females, after controlling for age. The estimated hazard ratio of .937 comparing females to males is not significant.

5.3. Expanding and interpreting the Cox regression model with interaction terms

In our previous model we examined the effects of gender and age on the hazard rate of dying after being hospitalized for heart attack. At this stage we
might be interested in expanding the model with more predictor effects. For example, we found that the gender effect seems to disappear after accounting
for age, but we may suspect that the effect of age is different for each gender. We could test for different age effects with an interaction term between
gender and age. Based on past research, we also hypothesize that BMI is predictive of the hazard rate, and that its effect may be non-linear. Finally, we

2500

data covs;

format gender gender.;
input gender age;
datalines;

0 69.845947

1 69.845947

k]
run;

proc phreg data = whas500 plots(overlay)=(survival);

class gender;
model lenfol*fstat(@) = gender age;

baseline covariates=covs out=base / rowid=gender;

un;

strongly suspect that heart rate is predictive of survival, so we include this effect in the model as well.

In the code below we fit a Cox regression model where we allow examine the effects of gender, age, bmi, and heart rate on the hazard rate. Here, we would

like to introdue two types of interaction:

* The interaction of 2 different variables, such as gender and age, is specified through the syntax gender|age , which requests inidividual effects of each
term as well as their interaction. This allows the effect of age to differ by gender (and the effect of gender to differ by age).

e The interaction of a continuous variable, such as bmi, with itself is specified by bmi|bmi , to model both linear and quadratic effects of that variable. A
quadratic effect implies that the effect of the variable changes with the level of the variable itself (i.e. an interaction of the variable with itself).

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr ;
run;

Model Fit Statistics

Without With
Criterion | Covariates | Covariates

2LOGL 2455158 | 2276.150
AIC 2455.158 2288.150
SBC 2455.158 2308.374

Testing Global Null Hypothesis: BETA=0
Test | Chi-Square | DF | Pr > ChiSq

Likelihood Ratio 179.0077 6 <.0001
Score 174.7924 6 <.0001
Wald 154.9497 | 6 <.0001

Type 3 Tests
Effect DF Wald Chi-Square | Pr > ChiSq

GENDER 1 4.5117 0.0337
AGE 1 72.0368 <.0001
AGE*GENDER | 1 5.4646 0.0194
BMI 1 7.0382 0.0080
BMI*BMI 1 4.8858 0.0271
HR 1 21.4528 <.0001
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Analysis of Maximum Likelihood Estimates

Parameter  Standard Hazard

Parameter F | Estimate Error Chi-Square Pr > ChiSq Ratio Label
GENDER Female 1 2.10986  0.99330 4.5117 0.0337 . | GENDER Female
AGE 1 0.07086  0.00835 72.0368 <.0001 .
AGE*GENDER | Female | 1 -0.02925  0.01251 5.4646 0.0194 . | GENDER Female * AGE
BMI 1 -0.23323 0.08791 7.0382 0.0080
BMI*BMI 1 0.00363  0.00164 4.8858 0.0271 . BMI * BMI
HR 1 0.01277  0.00276 21.4528 <.0001  1.013

We would probably prefer this model to the simpler model with just gender and age as explanatory factors for a couple of reasons. First, each of the effects,
including both interactions, are significant. Second, all three fit statistics, -2 LOG L, AIC and SBC, are each 20-30 points lower in the larger model,
suggesting the including the extra parameters improve the fit of the model substantially.

Let's interpret our model. We should begin by analyzing our interactions. The significant AGE*GENDER interaction term suggests that the effect of age is
different by gender. Recall that when we introduce interactions into our model, each individual term comprising that interaction (such as GENDER and AGE)
is no longer a main effect, but is instead the simple effect of that variable with the interacting variable held at 0. Thus, for example the AGE term describes
the effect of age when gender=0, or the age effect for males. It appears that for males the log hazard rate increases with each year of age by 0.07086, and
this AGE effect is significant, p<0.0001. The age effect is less severe for females, as the AGE*GENDER term is negative, which means for females, the
change in the log hazard rate per year of age is 0.07086-0.02925=0.04161. We cannot tell whether this age effect for females is significantly different from 0
just yet (see below), but we do know that it is significantly different from the age effect for males. Similarly, because we included a BMI*BMI interaction
term in our model, the BMI term is interpreted as the effect of bmi when bmi is 0. The BMI*BMI term describes the change in this effect for each unit
increase in bmi. Thus, it appears, that when bmi=0, as bmi increases, the hazard rate decreases, but that this negative slope flattens and becomes more
positive as bmi increases.

5.4. Using the hazardratio statement and graphs to interpret effects, particularly interactions

Notice in the Analysis of Maximum Likelihood Estimates table above that the Hazard Ratio entries for terms involved in interactions are left empty.
SAS omits them to remind you that the hazard ratios corresponding to these effects depend on other variables in the model.

Below, we show how to use the hazardratio statement to request that SAS estimate 3 hazard ratios at specific levels of our covariates.

* After the keyword hazardratio , we can optionally apply a label, then we specify the variable whose levels are to be compared in the hazard, and finally
after the option keyword at we tell SAS at which level of our other covariates to evaluate this hazard ratio. If the variable whose hazard rates are to
computed is not involved in an interaction, specification of additional covariates is unncessary since the hazard ratio is constant across levels of all

other covariates (a main effect).

HR(age+1)
HR(age)

only with class variables to request the hazard ratio at all levels of the class variable.

HR(gender=1)

W at ages 0, 20, 40, 60, and 80.
HR(bmi+5)
HR(bmi)
units=5. BMI classes are typically separated by about 5 points, so we would like to see how the hazard ratio between (approximately) adjacent BMI

classes changes as bmi increases.

¢ We calculate the hazard ratio describing a one-unit increase in age, or , for both genders. Notice the =aLL following gender , which is used

* We also calculate the hazard ratio between females and males, or

¢ Finally, we calculate the hazard ratio describing a 5-unit increase in bmi, or , at clinically revelant BMI scores. Notice the additional option

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr ;

hazardratio 'Effect of 1-unit change in age by gender' age / at(gender=ALL);

hazardratio 'Effect of gender across ages' gender / at(age=(© 20 40 60 80));

hazardratio 'Effect of 5-unit change in bmi across bmi' bmi / at(bmi = (15 18.5 25 3@ 40)) units=5;

run;
Effect of 1-unit change in age by gender: Hazard Ratios for AGE
Description | Point Estimate | 95% Wald Confidence Limits
AGE Unit=1 At GENDER=Female 1.042 1.022 1.063
AGE Unit=1 At GENDER=Male 1.073 1.056 1.091
Effect of gender across ages: Hazard Ratios for GENDER
Description | Point Estimate | 95% Wald Confidence Limits
GENDER Female vs Male At AGE=0 8.247 1.177 57.783
GENDER Female vs Male At AGE=20 4.594 1.064 19.841
GENDER Female vs Male At AGE=40 2.559 0.955 6.857
GENDER Female vs Male At AGE=60 1.426 0.837 2.429
GENDER Female vs Male At AGE=80 0.794 0.601 1.049
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Effect of 5-unit change in bmi across bmi: Hazard Ratios for BMI

Description | Point Estimate | 95% Wald Confidence Limits

BMI Unit=5 At BMI=15 0.588 0.428 0.809
BMI Unit=5 At BMI=18.5 0.668 0.535 0.835
BMI Unit=5 At BMI=25 0.846 0.733 0.977
BMI Unit=5 At BMI=30 1.015 0.797 1.291
BMI Unit=5 At BMI=40 1.459 0.853 2.497

In each of the tables, we have the hazard ratio listed under Point Estimate and confidence intervals for the hazard ratio. Confidence intervals that do not
include the value 1 imply that hazard ratio is significantly different from 1 (and that the log hazard rate change is significanlty different from 0). Thus, in the
HR(age+1)

HR(age)
genders accumulate the risk for death with age, but females accumulate risk more slowly. In the second table, we see that the hazard ratio between
HR(gender=1)
HR(gender=0)
that the gender effect was modest, and it appears that for ages 40 and up, which are the ages of patients in our dataset, the hazard rates do not differ by
HR(bmi+5)

HR(bmi)
than 1 at low bmi scores, indicating that higher bmi patients survive better when patients are very underweight, but that this advantage disappears and
almost seems to reverse at higher bmi levels.

first table, we see that the hazard ratio for age, , is lower for females than for males, but both are significantly different from 1. Thus, both

genders, , decreases with age, significantly different from 1 at age = 0 and age = 20, but becoming non-signicant by 40. We previously saw

gender. Finally, we see that the hazard ratio describing a 5-unit increase in bmi, , increases with bmi . The effect of bmi is significantly lower

Graphs are particularly useful for interpreting interactions. We can plot separate graphs for each combination of values of the covariates comprising the
interactions. Below we plot survivor curves across several ages for each gender through the follwing steps:

¢ We again first create a covariates dataset, here called covs2, to tell SAS at which covariate values we would like to estimate the survivor function.
Here we want curves for both males and females at ages 40, 60, and 80. All predictors in the model must be in the covariates dataset, so we set bmi
and hr to their means.

¢ We then specify the name of this dataset in the covariates= option on the baseline statement.

* \We request separate lines for each age using rowid= and separate graphs by gender using group= on the baseline statement.

* We request that SAS create separate survival curves by the group option, with separate curves by rowid= overlaid on the same graph with the syntax

plots(overlay=group)=(survival) .

Survivor Functions for gender=0 data covs2;
3

format gender gender.;
input gender age bmi hr;
datalines;

0 40 26.614 23.586

0 60 26.614 23.586

0 80 26.614 23.586

1 40 26.614 23.586

1 60 26.614 23.586

1 80 26.614 23.586

H

run;

Survival Prabability

proc phreg data = whas500 plots(overlay=group)=(survival);
class gender;

00 model lenfol*fstat(@) = gender|age bmi|bmi hr ;
0 500 1000 1500 2000 500 baseline covariates=covs2 / rowid=age group=gender;
LENFOL run;

60

40

age

Surviver Functions for gender=1

08

Survival Probability

0 500 1000 1500 2000 2500
LENFOL
40

age 60

As we surmised earlier, the effect of age appears to be more severe in males than in females, reflected by the greater separation between curves in the top

http://www .ats.ucla.edu/stat/sas/seminars/sas_survival/ 16/28



12/8/2015 SAS Seminar: Introduction to Survival Analysis in SAS
graaph.

5.5. Create time-varying covariates with programming statements

Thus far in this seminar we have only dealt with covariates with values fixed across follow up time. With such data, each subject can be represented by one
row of data, as each covariate only requires only value. However, often we are interested in modeling the effects of a covariate whose values may change
during the course of follow up time. For example, patients in the WHAS500 dataset are in the hospital at the beginnig of follow-up time, which is defined by
hospital admission after heart attack. Many, but not all, patients leave the hospital before dying, and the length of stay in the hospital is recorded in the
variable los . We, as researchers, might be interested in exploring the effects of being hospitalized on the hazard rate. As we know, each subject in the
WHASS500 dataset is represented by one row of data, so the dataset is not ready for modeling time-varying covariates. Our goal is to transform the data
from its original state:

Obs | ID | LENFOL | FSTAT LOS

1 1 2178 0 5
2 2 2172 0 5
3 3 2190 0 5
4 4 297 1 10
5 5 2131 0 6
6 6 1 1 1
7 7 2122 0 5

to an expanded state that can accommodate time-varying covariates, like this (notice the new variable in_hosp):

Obs | ID | start | stop | status  in_hosp

1 1 0 5 0 1
2 1 5 2178 0 0
3 2 0 5 0 1
4 2 5 2172 0 0
5 3 0 5 0 1
6 3 5 2190 0 0
7 4 0 10 0 1
8 4 10 297 1 0
9 5 0 6 0 1
10 5 6 2131 0 0
1" 6 0 1 1 1
12 7 0 5 0 1
13 7 5 2122 0 0

Notice the creation of start and stop variables, which denote the beginning and end intervals defined by hospitalization and death (or censoring). Notice also
that care must be used in altering the censoring variable to accommodate the multiple rows per subject.

If the data come prepared with one row of data per subject each time a covariate changes value, then the researcher does not need to expand the data any
further. However, if that is not the case, then it may be possible to use programming statement within proc phreg to create variables that reflect the
changing the status of a covariate. Alternatively, the data can be expanded in a data step, but this can be tedious and prone to errors (although
instructive, on the other hand).

Fortunately, it is very simple to create a time-varying covariate using programming statements in proc phreg. These statement essentially look like data
step statements, and function in the same way. In the code below, we model the effects of hospitalization on the hazard rate. To do so:

* \We create the variable in_hosp, which is 1 if the patient is currently in the hospital ( 1enfol <= 1os ), and 0 when the patient leaves ( lenfol > 1los).
e \We also add the newly created time-varying covariate to the model statement.

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr in_hosp ;
if lenfol > los then in_hosp = 0;

else in_hosp = 1;

run;
Analysis of Maximum Likelihood Estimates
Parameter | Standard Hazard
Parameter DF | Estimate Error | Chi-Square | Pr > ChiSq Ratio Label
GENDER Female | 1 2.16143 = 1.00426 4.6322 0.0314 GENDER Female
AGE 1 0.07301 ' 0.00851 73.6642 <.0001
AGE*GENDER | Female | 1 -0.03025 0.01266 5.7090 0.0169 GENDER Female * AGE
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BMI 1 -0.22302 | 0.08847 6.3548 0.0117

BMI*BMI 1 0.00348  0.00166 4.4123 0.0357 .| BMI * BMI
HR 1 0.01222  0.00277 19.4528 <.0001  1.012

in_hosp 1 2.09971 0.39617 28.0906 <.0001 8.164

It appears that being in the hospital increases the hazard rate, but this is probably due to the fact that all patients were in the hospital immediately after
heart attack, when they presumbly are most vulnerable.

6. Exploring functional form of covariates

In the Cox proportional hazards model, additive changes in the covariates are assumed to have constant multiplicative effects on the hazard rate (expressed
as the hazard ratio (H R)):

HR = exp(B:(x2 — 1))

In other words, each unit change in the covariate, no matter at what level of the covariate, is associated with the same percent change in the hazard rate, or
a constant hazard ratio. For example, if ﬂz is 0.5, each unit increase in = will cause a ~65% increase in the hazard rate, whether X is increasing from 0 to 1
or from 99 to 100, as HR = exp(0.5(1)) = 1.6487. However, it is quite possible that the hazard rate and the covariates do not have such a loglinear
relationship. Constant multiplicative changes in the hazard rate may instead be associated with constant multiplicative, rather than additive, changes in the
covariate, and might follow this relationship:

HR = cap(y(log(e2) ~ logla1)) = eap(Fullog™2)

This relationship would imply that moving from 1 to 2 on the covariate would cause the same percent change in the hazard rate as moving from 50 to 100.

It is not always possible to know a priori the correct functional form that describes the relationship between a covariate and the hazard rate. Plots of the
covariate versus martingale residuals can help us get an idea of what the functional from might be.

6.1 Plotting cumulative martingale residuals against covariates to determine the functional form of covariates

The background necessary to explain the mathematical definition of a martingale residual is beyond the scope of this seminar, but interested readers may
consult (Therneau, 1990). For this seminar, it is enough to know that the martingale residual can be interpreted as a measure of excess observed events, or
the difference between the observed number of events and the expected number of events under the model:

martingale residual = excess observed events = observed events — (expected events|model)

Therneau and colleagues(1990) show that the smooth of a scatter plot of the martingale residuals from a null model (no covariates at all) versus each
covariate individually will often approximate the correct functional form of a covariate. Previously we suspected that the effect of bmi on the log hazard rate
may not be purely linear, so it would be wise to investigate further. In the code below we demonstrate the steps to take to explore the functional form of a
covariate:

* Run a null Cox regression model by leaving the right side of equation empty on the model statement within proc phreg .

e Save the martingale residuals to an output dataset using the resmart option in the output statement within proc phreg. In the code below we save
the residuals to a variable named "martingale”.

e Use proc loess to plot scatter plot smooths of the covariate (here bmi) vs the martingale residuals. The loess method selects portions of the data into
local neighborhoods and fits a regression surface to each neighboorhood. This allows the regression surface to take a wide variety of shapes. The
smoothed regression surfaces should approximate the functional form of the covariate.

e Within proc loess we specify the martingale residual dataset on the proc loess statement. We specify which variables to model on the model
statement.

¢ The fraction of the data contained in each neighborhood is determined by the smoothing parameter, and thus larger smoothing parameter values
produce smoother surfaces. Below we request 4 smooths using the smooth option.

* A desirable feature of loess smooth is that the residuals from the regression do not have any structure. We can examine residual plots for each smooth
(with loess smooth themselves) by specifying the plots=ResidualsBySmooth option on the proc loess statement.

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = ;

output out=residuals resmart=martingale;
run;

proc loess data = residuals plots=ResidualsBySmooth(smooth);

model martingale = bmi / smooth=0.2 0.4 0.6 0.8;
run;
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Fits with Specified Smooths for martingale
Smooth=0.2 Smooth=0.4

Martingale Residual

Martingale Residual

0 30 40 20 30 40
BMI BMI

Residuals at Specified Smooths for martingale
‘With Loess Fits

Smooth=0.2 Smooth=0.4

Residual

Residual

20 30 40 20 30 40

In the left panel above, "Fits with Specified Smooths for martingale”, we see our 4 scatter plot smooths. In all of the plots, the martingale residuals tend to
be larger and more positive at low bmi values, and smaller and more negative at high bmi values. This indicates that omitting bmi from the model causes
those with low bmi values to modeled with too low a hazard rate (as the number of observed events is in excess of the expected number of events). On the
right panel, "Residuals at Specified Smooths for martingale", are the smoothed residual plots, all of which appear to have no structure. The surface where
the smoothing parameter=0.2 appears to be overfit and jagged, and such a shape would be difficult to model. However, each of the other 3 at the higher
smoothing parameter values have very similar shapes, which appears to be a linear effect of bmi that flattens as bmi increases. This indicates that our
choice of modeling a linear and quadratic effect of bmi was a reasonable one. One caveat is that this method for determining functional form is less reliable
when covariates are correlated. However, despite our knowledge that bmi is correlated with age, this method provides good insight into bmi's functional
form.

6.2. Using the assess statement to explore functional forms

SAS provides built-in methods for evaluating the functional form of covariates through its assess statement. These techniques were developed by Lin, Wei
and Zing (1993). The basic idea is that martingale residuals can be grouped cumulatively either by follow up time and/or by covariate value. If our Cox model
is correctly specified, these cumulative martingale sums should randomly fluctuate around 0. Significant departures from random error would suggest model
misspecification. We could thus evaluate model specification by comparing the observed distribution of cumulative sums of martingale residuals to the
expected distribution of the residuals under the null hypothesis that the model is correctly specified. The null distribution of the cumulative martingale
residuals can be simulated through zero-mean Gaussian processes. If the observed pattern differs significantly from the simulated patterns, we reject the
null hypothesis that the model is correctly specified, and conclude that the model should be modified. In such cases, the correct form may be inferred from
the plot of the observed pattern. This technique can detect many departures from the true model, such as incorrect functional forms of covariates (discussed
in this section), violations of the proportional hazards assumption (discussed later), and using the wrong link function (not discussed).

Below we demonstrate use of the assess statement to the functional form of the covariates. Several covariates can be evaluated simultaneously. We
compare 2 models, one with just a linear effect of bmi and one with both a linear and quadratic effect of bmi (in addition to our other covariates). Using the
assess statement to check functional form is very simple:

e List all covariates whose functional forms are to be checked within parentheses after var= on the assess statement. Only continuous covariates may
be assessed this way, not class variables.

¢ We also specify the resample option, which performs a supremum test of the null hypothesis that the observed pattern of martingale residuals is not
different from the expected pattern (i.e. that the model is correctly specified). Essentially, the supremum tests calculates the proportion of 1000
simulations that contain a maximum cumulative martingale residual larger than the observed maximum cumulative residual. This proportion is reported
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as the p-value. If only a small proportion, say 0.05, of the simulations have a maximum cumulative residual larger than the observed maximum, then
that suggests that the observed residuals are larger than expected under the proposed model and that the model should be modified.

First let's look at the model with just a linear effect for bmi.

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi hr;
assess var=(age bmi hr) / resample;

run;

Checking Functional Form for AGE Checking Functional Form for BMI
Observed Path and First 20 Simulated Paths Observed Path and First 20 Simulated Paths

| Pr>MaxAbsval: 0.1510
{1000 Simulations)

Cumulative Martingale Residuals
Cumulative Martingale Residuals

Pr> MaxAhsval: 0.2440
(1000 Simulations)
T T T T T T T

40 60 80 100 20 30 40
AGE BMI

Checking Functional Ferm for HR
Observed Path and First 20 Simulated Paths

Cumulative Martingale Residuals

Pr=MaxAbsVal 0.3940
(1000 Simulations)
T T T T

50 100 150 200
HR

Supremum Test for Functional Form

Maximum Absolute Pr>

Variable Value | Replications Seed MaxAbsVal

| AGE 11.2240 1000 | 164727001 0.1510
| BMI 11.0212 1000 | 164727001 0.2440
| HR 9.3459 1000 | 164727001 0.3940

In each of the graphs above, a covariate is plotted against cumulative martingale residuals. The solid lines represent the observed cumulative residuals,
while dotted lines represent 20 simulated sets of residuals expected under the null hypothesis that the model is correctly specified. Unless the seed option
is specified, these sets will be different each time proc phreg is run. A solid line that falls significantly outside the boundaries set up collectively by the
dotted lines suggest that our model residuals do not conform to the expected residuals under our model. None of the graphs look particularly alarming (click
here to see an alarming graph in the SAS example on assess ). Additionally, none of the supremum tests are significant, suggesting that our residuals are
not larger than expected. Nevertheless, the bmi graph at the top right above does not look particularly random, as again we have large positive residuals at
low bmi values and smaller negative residuals at higher bmi values. This suggests that perhaps the functional form of bmi should be modified.

Now let's look at the model with just both linear and quadratic effects for bmi.

proc phreg data = whas500;

class gender;

model lenfol*fstat(®) = gender|age bmi|bmi hr;
assess var=(age bmi bmi*bmi hr) / resample;
run;
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Checking Functional Ferm for BMI
Observed Path and First 20 Simulated Paths

Observed Path and First 20 Simulated Paths

Pr> MaxAhsval: 0.2820
_| (1000 Simulations)

Cumulative Martingale Residuals
Cumulative Martingale Residuals

-104 Pr > MaxAbsval: 06370
' (1000 Simulations)

T T T T
40 60 B0 100 20 30 40

AGE BMI

Checking Functional Ferm for HR
Observed Path and First 20 Simulated Paths

Checking Functional Ferm for BMIBMI
Observed Path and First 20 Simulated Paths

Cumulative Martingale Residuals
Cumulative Martingale Residuals

Pr > MaxAbsVal: 0.4200
(1000 Simulations)

Pr > MarAbsVal: 0.6370
(1000 Simulations)

T - T T — T T T
50 100 150 200 500 1000 1500 2000
HR BMI = BMI

Supremum Test for Functional Form

Maximum Absolute Pr>
Variable Value | Replications Seed MaxAbsVal
| AGE 9.7412 1000 | 179001001 0.2820
| BMI 7.8329 1000 ' 179001001 0.6370
| BMIBMI 7.8329 1000 ' 179001001 0.6370
| HR 9.1548 1000 | 179001001 0.4200

The graph for bmi at top right looks better behaved now with smaller residuals at the lower end of bmi. The other covariates, including the additional graph
for the quadratic effect for bmi all look reasonable. Thus, we again feel justified in our choice of modeling a quadratic effect of bmi.

7. Assessing the proportional hazards assumption

A central assumption of Cox regression is that covariate effects on the hazard rate, namely hazard ratios, are constant over time. For example, if males
have twice the hazard rate of females 1 day after followup, the Cox model assumes that males have twice the hazard rate at 1000 days after follow up as
well. Violations of the proportional hazard assumption may cause bias in the estimated coefficients as well as incorrect inference regarding significance of
effects.

7.1. Graphing Kaplan-Meier survival function estimates to assess proportional hazards for categorical
covariates

In the case of categorical covariates, graphs of the Kaplan-Meier estimates of the survival function provide quick and easy checks of proportional hazards. If

proportional hazards holds, the graphs of the survival function should look "parallel”, in the sense that they should have basically the same shape, should not
cross, and should start close and then diverge slowly through follow up time. Earlier in the seminar we graphed the Kaplan-Meier survivor function estimates
for males and females, and gender appears to adhere to the proportional hazards assumption.
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Product-Limit Survival Estimates
With Number of Subjects at Risk and 95% Hall-WelIner Bands

+ Censared

z
é 0.8
s
%ﬂ proc lifetest data=whas500 atrisk plots=survival(atrisk cb) outs=outwhas500;
z o strata gender;
time lenfol*fstat(0);

02 run;

0.0
Female 200 115 85 35 14 o

Male 300 179 144 84 33 o

0 500 1000 1500 2000 2500
LENFOL
GENDER Female Male

7.2. Plotting scaled Schoenfeld residuals vs functions of time to assess proportional hazards of a continuous
covariate

A popular method for evaluating the proportional hazards assumption is to examine the Schoenfeld residuals. The Schoenfeld residual for observation j and
covariate p is defined as the difference between covariate p for observation j and the weighted average of the covariate values for all subjects still at risk
when observation j experiences the event. Grambsch and Therneau (1994) show that a scaled version of the Schoenfeld residual at time k for a particular
covariate p will approximate the change in the regression coefficient at time k:

E(sy,) + B, =~ Bi(ts)

In the relation above, szp is the scaled Schoenfeld residual for covariate p at time k, ﬂp is the time-invariant coefficient, and ,Bj(tk) is the time-variant

coefficient. In other words, the average of the Schoenfeld residuals for coefficient p at time k estimates the change in the coefficient at time k. Thus, if the
average is 0 across time, then that suggests the coefficient p does not vary over time and that the proportional hazards assumption holds for covariate p. It
is possible that the relationship with time is not linear, so we should check other functional forms of time, such as log(time) and rank(time).

We will use scatterplot smooths to explore the scaled Schoenfeld residuals' relationship with time, as we did to check functional forms before. Here are the
steps we will take to evaluate the proportional hazards assumption for age through scaled Schoenfeld residuals:

¢ Scaled Schoenfeld residuals are obtained in the output dataset, so we will need to supply the name of an output dataset using the out= option on the
output statement as before. Below, we call this dataset "schoen".

* SAS provides Schoenfeld residuals for each covariate, and they are output in the same order as the coefficients are listed in the "Analysis of Maximum
Likelihood Estimates" table. Only as many residuals are output as names are supplied on the ressch= option. For this demonstration, we are
particularly interested in the Schoenfeld residuals for age.

¢ We should check for non-linear relationships with time, so we include a data step that calculates the log of 1enfol. Other functions can be explored as
well.

e \We then use proc loess to obtain our smooths. Flat lines at 0 suggest that the coefficient does not vary over time and that proportional hazards holds.
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Fits with Specified Smooths for schage
Smooth=102 Smooth=0.4

proc phreg data=whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr;

output out=schoen ressch=schgender schage schgenderage
schbmi schbmibmi schhr;

run;

Schoenfeld Residual for AGE

data schoen;

set schoen;

loglenfol = log(lenfol);
run;

proc loess data = schoen;

model schage=lenfol / smooth=(0.2 0.4 0.6 0.8);

run;

proc loess data = schoen;

model schage=loglenfol / smooth=(0.2 0.4 0.6 0.8);

run; Fits with Specified Smooths for schage
Smooth=0.2 Smoaoth= 0.4

Schoenfeld Residual far AGE

o 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
LENFOL LENFOL

Schoenfeld Residual far AGE

Schoenfeld Residual for AGE

loglenfol loglenfol

Although possibly slightly positively trending, the smooths appear mostly flat at 0, suggesting that the coefficient for age does not change over time and that
proportional hazards holds for this covariate. The same procedure could be repeated to check all covariates.

7.3. Using assess with the ph option to check proportional hazards

The procedure Lin, Wei, and Zing(1990) developed that we previously introduced to explore covariate functional forms can also detect violations of
proportional hazards by using a transform of the martingale residuals known as the empirical score process. Once again, the empirical score process under
the null hypothesis of no model misspecification can be approximated by zero mean Gaussian processes, and the observed score process can be compared
to the simulated processes to asses departure from proportional hazards.

The assess statement with the ph option provides an easy method to assess the proportional hazards assumption both graphically and numerically for
many covariates at once. Here we demonstrate how to assess the proportional hazards assumption for all of our covariates (graph for gender not shown):

¢ As before with checking functional forms, we list all the variables for which we would like to assess the proportional hazards assumption after the var
option on the assess statement.

* We additionally add the option ph to tell SAS that we would like to assess proportional hazards in addition to checking functional forms.

e As before, we specify the resample option to request the supremum tests of the null hypothesis that proportional hazards holds. These tests calculate
the proportion of simulated score processes that yielded a maximum score larger than the maximum observed score process. A very small proportion
(p-value) suggests violation of proportional hazards.
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Checking Proportional Hazards Assumption for AGE
Observed Path and First 20 Simulated Paths

Standardized Score Process
Standardized Score Process

Pr>MaxAbsVal: 0.9190
(1000 Simulations)

0 500 1000 1500 2000 2500 0 500 1000

LENFOL LENFOL

Checking Propertional Hazards Assumption for HR
Observed Path and First 20 Simulated Paths

Standardized Score Process
Standardized Score Process

Pr > MaxAbsVal: 0.2690
(1000 Simulations)

0 500 1000 1500 2000 2500 0 500 1000

LENFOL LENFOL

Supremum Test for Proportionals Hazards Assumption

Maximum Absolute Pr >
Seed  MaxAbsVal

Variable Value | Replications
GENDERFemale 0.6394 1000 | 778428000 0.7680
AGE 0.4965 1000 | 778428000 0.9600
BMI 5.9813 1000 | 778428000 0.2890
BMIBMI 5.9350 1000 | 778428000 0.3160
HR 0.8861 1000 | 778428000 0.3080

As we did with functional form checking, we inspect each graph for observed score processes, the solid blue lines, that appear quite different from the 20
simulated score processes, the dotted lines. None of the solid blue lines looks particularly aberrant, and all of the supremum tests are non-significant, so we

conclude that proportional hazards holds for all of our covariates.

7.4. Dealing with nonproportionality

If nonproportional hazards are detected, the researcher has many options with how to address the violation:

Checking Propertional Hazards Assumption for BMI
Ohserved Path and First 20 Simulated Paths

Pr>MaxAbsVal: 0.3170
(1000 Simulations)

1500 2000 2500

Checking Propertional Hazards Assumption for BMIBMI
Observed Path and First 20 Simulated Paths

Pr > MaxAbsVal: 0.3440
(1000 Simulations)

1500 2000 2500

* Ignore the nonproportionality if it appears the changes in the coefficient over time are very small or if it appears the outliers are driving the changes in

the coefficient. In large datasets, very small departures from proportional hazards can be detected. If, say, a regression coefficient changes only by 1%
over time, it is unlikely that any overarching conclusions of the study would be affected. Additionally, a few heavily influential points may be causing
nonproportional hazards to be detected, so it is important to use graphical methods to ensure this is not the case.

Stratify the model by the nonproportional covariate. Stratification allows each stratum to have its own baseline hazard, which solves the problem of
nonproportionality. However, one cannot test whether the stratifying variable itself affects the hazard rate significantly. Additionally, although stratifying
by a categorical covariate works naturally, it is often difficult to know how to best discretize a continuous covariate. This can be easily accomplished in
proc phreh with the strata statement.

Run Cox models on intervals of follow up time rather than on its entirety. Proportional hazards may hold for shorter intervals of time within the entirety
of follow up time. Some data management will be required to ensure that everyone is properly censored in each interval.

Include covariate interactions with time as predictors in the Cox model. This can be accomplished through programming statements in proc phreg, as
these interactions are time-varying covariates themselves. Indeed, including such an interaction has been used as a test of proportional hazards -- a
significant interaction indicates violation of the assumption. Below, we provide code that shows how to include a covariate interaction with time in the
model. We create the interaction variable hrtime by multiplying hr by lenfol. The interaction variable is of course included on the model statement
as well. The output indicates that this interaction is non-significant, which is not surprising given that hr has not shown evidence of nonproportionality.
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proc phreg data=whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr hrtime;
hrtime = hr*lenfol;

run;
Analysis of Maximum Likelihood Estimates
Parameter | Standard Hazard
Parameter DF Estimate Error | Chi-Square | Pr > ChiSq ' Ratio Label
GENDER Female 1 2.10602 0.99264 4.5013 0.0339 . GENDER Female
AGE 1 0.07099 0.00835 72.2933 <.0001
AGE*GENDER | Female | 1 -0.02927 0.01250 5.4805 0.0192 . GENDER Female * AGE
BMI 1 -0.23297 0.08788 7.0276 0.0080
BMI*BMI 1 0.00363 0.00164 4.8856 0.0271 . BMI * BMI
HR 1 0.01174 0.00350 11.2671 0.0008  1.012
hrtime 1| 2.84574E-6 | 5.88882E-6 0.2335 0.6289  1.000

8. Influence Diagnostics

8.1. Inspecting dfbetas to assess influence of observations on individual regression coefficients

After fitting a model it is good practice to assess the influence of observations in your data, to check if any outlier has a disproportionately large impact on
the model. Once outliers are identified, we then decide whether to keep the observation or throw it out, because perhaps the data may have been entered in
error or the observation is not particularly representative of the population of interest.

The dfbeta measure quantifies how much an observation influences the regression coefficients in the model. For observation 7, dfbeta]- approximates the

change in a coefficient when that observation is deleted. We thus calculate the coefficient with the observation, call it ,8 and then the coefficient when
observation j is deleted, call it ﬁj, and take the difference to obtain dfbetaj.

dfbeta; ~ B — ﬂ}

Positive values of dfbetaj indicate that the exclusion of the observation causes the coefficient to decrease, which implies that inclusion of the observation
causes the coefficient to increase. Thus, it might be easier to think of d fbeta; as the effect of including observation j on the the coefficient.

SAS provides easy ways to examine the dfbeta values for all observations across all coefficients in the model. Plots of covariates vs dfbetas can help to
identify influential outliers. Here are the steps we use to assess the influence of each observation on our regression coefficients:

¢ We obtain dfbeta values through in output datasets in SAS, so we will need to specify an output statement within proc phreg. On the output
statement, we supply the name of the output dataset "dfbeta" on the out= option.

* There are dfbeta values associated with each coefficient in the model, and they are output to the output dataset in the order that they appear in the
parameter table "Analysis of Maximum Likelihood Estimates" (see above). The order of dfbetas in the current model are: gender, age, gender*age,
bmi, bmi*bmi, hr. SAS expects individual names for each dfbeta associated with a coefficient. If only k£ names are supplied and k is less than the
number of distinct dfbetas, SAS will only output the first k£ dfbetas. Thus, to pull out all 6 dfbetas, we must supply 6 variable names for these dfbetas.

* We then plot each dfbeta against the associated coviarate using proc sgplot . Our aim is identifying which observations are influential, so we replace
the marker symbol with the id number of the observation by specifying the variable id on the markerchar= option.

proc phreg data = whas500;

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr;

output out = dfbeta dfbeta=dfgender dfage dfagegender dfbmi dfbmibmi dfhr;
run;

proc sgplot data = dfbeta;

scatter x = age y=dfage / markerchar=id;
run;

proc sgplot data = dfbeta;

scatter x = bmi y=dfbmi / markerchar=id;
run;

proc sgplot data = dfbeta;

scatter x = bmi y=dfbmibmi / markerchar=id;
run;
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proc sgplot data = dfbeta;
scatter x = hr y=dfhr / markerchar=id;
run;
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The dfbetas for age and hr look small compared to regression coefficients themselves (BagE = 0.07086 and Bhr = 0.01277) for the most part, but

id=89 has a rather large, negative dfbeta for hr. We also identify id=89 again and id=112 as influential on the linear bmi coefficient (3,,,;, = —0.23323),
and their large positive dfbetas suggest they are pulling up the coefficient for bmi when they are included.

Once you have identified the outliers, it is good practice to check that their data were not incorrectly entered. These two observations, id=89 and id=112,
have very low but not unreasonable bmi scores, 15.9 and 14.8. However they lived much longer than expected when considering their bmi scores and age
(95 and 87), which attenuates the effects of very low bmi. Thus, we can expect the coefficient for bmi to be more severe or more negative if we exclude

these observations from the model. Indeed, exclusion of these two outliers causes an almost doubling of 5, , from -0.23323 to -0.39619. Still, although

their effects are strong, we believe the data for these outliers are not in error and the significance of all effects are unaffected if we exclude them, so we
include them in the model.

proc print data = whas500(where=(id=112 or id=89));
var lenfol gender age bmi hr;
run;

Obs | LENFOL GENDER  AGE BMI | HR
89 1553 Male 95 15.9270 62
112 2123 | Female 87 14.8428 105

proc phreg data = whas500(where=(id~=112 and id~=89));

class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr;

output out = dfbeta dfbeta=dfgender dfage dfagegender dfbmi dfbmibmi dfhr;

run;
Analysis of Maximum Likelihood Estimates
Parameter  Standard Hazard
Parameter DF | Estimate Error  Chi-Square Pr > ChiSq Ratio Label
GENDER Female 1 2.07605 1.01218 4.2069 0.0403 . | GENDER Female
AGE 1 0.07412  0.00855 75.2370 <.0001 .
AGE*GENDER | Female | 1 -0.02959 = 0.01277 5.3732 0.0204 . | GENDER Female * AGE
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BMI 1 -0.39619 = 0.09365 17.8985 <.0001
BMI*BMI 1 0.00640 = 0.00171 14.0282 0.0002 .| BMI * BMI
HR 1 0.01244  0.00279 19.9566 <.0001 | 1.013

8.2. Plotting likelihood displacement scores to assess influence on the overall model

Not only are we interested in how influential observations affect coefficients, we are interested in how they affect the model as a whole. The likelihood
displacement score quantifies how much the likelihood of the model, which is affected by all coefficients, changes when the observation is left out. This
analysis proceeds in much the same was as dfbeta analysis, in that we will:

¢ OQutput the likelihood displacement scores to an output dataset, which we name on the out= option on the output statement in proc phreg. Below, we
name the output dataset "Id".

* Name the variable to store the likelihood displacement score on the 1d= option on the output statement

* Graph the likelihood displacement scores vs follow up time using proc sgplot . We replace the marker symbols with the id number using the
markerchar=_option again.

112

proc phreg data = whas500;
class gender;

model lenfol*fstat(@) = gender|age bmi|bmi hr; 06
output out=1d 1d=1d;
run;

proc sgplot data=1d;
scatter x=lenfol y=1d / markerchar=id;
run;
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We see the same 2 outliers we identifed before, id=89 and id=112, as having the largest influence on the model overall, probably primarily through their
effects on the bmi coefficient. However, we have decided that there covariate scores are reasonable so we retain them in the model.
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